In the previous post we imagined that we needed to build a caching system in front of a slow backend system. The cache needed to meet the following requirements:
- The data in the backend system is constantly being updated so the caches need to be updated every N minutes.
- Requests to the backend system need to be throttled.
Akka actors looked like a good fit for the requirements. Each actor would handle a query for the backend system and cache the results. In part 1 I talked about the CachingSystem which created CacheActors and provided helper methods for working with the caches. In this post I will cover the CacheActor class hierarchy.
Here is the base CacheActor class:
abstract class CacheActor[V](cacheSystem: CacheSystem) extends Actor with Logging {
implicit val execContext: ExecutionContext = context.dispatcher
def findValueReceive: Receive = {
case FindValue(params) => findValueForSender(params, sender)
}
def findValueForSender(params: Params, sender: ActorRef) {
val key = params.cacheKey
val elem = cache.get(key)
if (elem != null) {
sender ! elem.getObjectValue.asInstanceOf[V]
} else {
Future { findObject(params) }.onComplete {
case Right(result) => result match {
case Some(value) => sender ! value
case None => sender ! Status.Failure(new Exception("findObject returned None for key=" + key + " cache=" + cache.getName))
}
case Left(ex) => sender ! Status.Failure(ex)
}
}
}
def findObject(params: Params): Option[V] = {
cacheSystem.findObjectForCache(params.cacheKey, cache,
finder(params))
}
// Provided by subclasses
val cache: Cache
def finder(params: Params): () => V
}
object CacheActor {
case class FindValue(params: Params)
trait Params {
def cacheKey: String
}
}
Part 1 showed an example of a CachingBusinessService sending a FindValue message to a Service1CacheActor using the ? (ask) method. findValueReceive handles FindValue by either returning a value from the cache or making a call to the backend (via CacheSystem.findObjectForCache) to get the value.
Concrete CacheActors are responsible for implementing finder which returns a function to query the backend system. The returned function is ultimately executed by CacheSystem.findObjectForCache.
Part 1 also showed CacheSystem sending UpdateCacheForNow messages to periodically update cache values. UpdateCacheForNow is handled by a subclass of CacheActor, DateCacheActor:
abstract class DateCacheActor[V](cacheSystem: CacheSystem)
extends CacheActor[V](cacheSystem) {
override def receive = findValueReceive orElse {
case UpdateCacheForNow => updateCacheForNow()
case UpdateCacheForPreviousBusinessDay => updateCacheForPreviousBusinessDay()
}
def updateCacheForNow() {
val activeBusinessDay: Range[Date] = DateUtil.calcActiveBusinessDay
val start = activeBusinessDay.getStart
val now = new Date
// If today is a business day and now is within the business day,
// retrieve data from the backend and put in the cache
if (now.getTime >= start.getTime &&
now.getTime <= activeBusinessDay.getEnd.getTime)
updateCacheForDate(now)
}
}
def updateCacheForPreviousBusinessDay() {
updateCacheForDate(DateUtil.calcActiveBusinessDay.getStart)
}
def updateCacheForDate(date: Date) {
import DateCacheActor._ // Use separate thread pool
Future { findObject(new DateParams(date)) }
}
}
object DateCacheActor {
// Update cache for the current time
case object UpdateCacheForNow
// Update cache for previous business day
case object UpdateCacheForPreviousBusinessDay
// updateCacheForDate() uses a separate thread pool to prevent scheduled tasks
// from interfering with user requests
val FUTURE_POOL_SIZE = 5
val FUTURE_QUEUE_SIZE = 20000
private lazy val ucfdThreadPoolExecutor =
new ThreadPoolExecutor(FUTURE_POOL_SIZE, FUTURE_POOL_SIZE, 1, TimeUnit.MINUTES,
new ArrayBlockingQueue(FUTURE_QUEUE_SIZE, true))
implicit lazy val ucfdExecutionContext: ExecutionContext =
ExecutionContext.fromExecutor(ucfdThreadPoolExecutor)
}
During non-business hours values UpdateCacheForNow messages are ignored and values from the previous business day are returned from the cache. If the app is started during non-business hours an UpdateCacheForPreviousBusinessDay message is scheduled to populate cache values for the previous business day.
A separate thread pool is used to perform the backend system queries for the scheduled UpdateCacheFor* tasks. We don’t want them to interfere with user requests which are handled using the regular actor thread pool.
Here is what a concrete DateCacheActor would look like, using the Service1CacheActor from part 1 as an example:
class Service1CacheActor(val cache: Cache, cacheSystem: CacheSystem,
bizService: BusinessService)
extends DateCacheActor[JList[Service1Result]](cacheSystem) {
override def receive = super.receive
override def updateCacheForDate(date: Date) {
import DateCacheActor._
Future { findObject(new Service1Params(date, true)) }
Future { findObject(new Service1Params(date, false)) }
}
def finder(params: Params) = { () =>
params match {
case p: Service1Params => bizService.service1(p.date, p.useFoo)
case _ => throw new IllegalArgumentException("...")
}
}
}
class Service1Params(date: Date, val useFoo: Boolean) extends DateParams(date) {
override def cacheKey = super.cacheKey + ":" + useFoo
}
Service1CacheActor‘s implementation of updateCacheForDate finds and caches the results of the true and false variations of the BusinessService.service1 backend system call.
If we wanted to cache another one of BusinessService‘s methods using the auto-updating caching system we would:
- Subclass
DateCacheActor, implementfinderand potentially overrideupdateCacheForDate. - Subclass
DateParams, providing the parameters to the backend query, and override thecacheKeymethod. - Call
createCacheActoragain inCachingBusinessServiceto create the newDateCacheActorfrom #1, and write a cached version of the backend query method, sendingFindValueto the new actor and waiting for the response.